Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 6: 818, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483828

RESUMO

Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a ß-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression.

2.
BMC Plant Biol ; 13: 155, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24099172

RESUMO

BACKGROUND: The terpenoid indole alkaloid (TIA) pathway leads to the production of pharmaceutically important drugs, such as the anticancer compounds vinblastine and vincristine. Unfortunately, these drugs are produced in trace amounts, causing them to be very costly. To increase production of these drugs, an improved understanding of the TIA regulatory pathway is needed. Towards this end, transgenic Catharanthus roseus hairy roots that overexpress the ORCA2 TIA transcriptional activator were generated and characterized. RESULTS: Transcriptional profiling experiments revealed that overexpression of ORCA2 results in altered expression of key genes from the indole and terpenoid pathways, which produce precursors for the TIA pathway, and from the TIA pathway itself. In addition, metabolite-profiling experiments revealed that overexpression of ORCA2 significantly affects the levels of several TIA metabolites. ORCA2 overexpression also causes significant increases in transcript levels of several TIA regulators, including TIA transcriptional repressors. CONCLUSIONS: Results presented here indicate that ORCA2 plays a critical role in regulation of TIA metabolism. ORCA2 regulates expression of key genes from both feeder pathways, as well as the genes (STR and SGD) encoding the enzymes that catalyze the first two steps in TIA biosynthesis. ORCA2 may play an especially important role in regulation of the downstream branches of the TIA pathway, as it regulates four out of five genes characterized from this part of the pathway. Regulation of TIA transcriptional repressors by ORCA2 may provide a mechanism whereby increases in TIA metabolite levels in response to external stimuli are transient and limited in magnitude.


Assuntos
Alcaloides/metabolismo , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Terpenos/metabolismo , Fatores de Transcrição/metabolismo , Catharanthus/genética , Modelos Biológicos , Fatores de Transcrição/genética
3.
Adv Biochem Eng Biotechnol ; 134: 23-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23576053

RESUMO

This review looks back on how the terpenoid indole alkaloid pathway and the regulatory factors in Catharanthus roseus were identified and characterized, and how metabolic engineering, including genetic engineering and metabolic profiling, was conducted based on the gained knowledge. In addition, further examination of the terpenoid indole alkaloid pathway is proposed.


Assuntos
Catharanthus/genética , Catharanthus/metabolismo , Raízes de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Engenharia Genética/métodos , Engenharia Metabólica/métodos , Raízes de Plantas/genética
4.
Metab Eng ; 13(2): 234-40, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21144909

RESUMO

The terpenoid indole alkaloid (TIA) pathway in Catharanthus roseus produces two important anticancer drugs, vinblastine and vincristine, in very low yields. This study focuses on overexpressing several key genes in the upper part of the TIA pathway in order to increase flux toward downstream metabolites within hairy root cultures. Specifically, we constructed hairy root lines with inducible overexpression of 1-deoxy-D-xylulose synthase (DXS) or geraniol-10-hydroxylase (G10H). We also constructed hairy root lines with inducible expression of DXS and anthranilate synthase α subunit (ASA) or DXS and G10H. DXS overexpression resulted in a significant increase in ajmalicine by 67%, serpentine by 26% and lochnericine by 49% and a significant decrease in tabersonine by 66% and hörhammericine by 54%. Co-overexpression of DXS and G10H caused a significant increase in ajmalicine by 16%, lochnericine by 31% and tabersonine by 13%. Likewise, DXS and ASA overexpression displayed a significant increase in hörhammericine by 30%, lochnericine by 27% and tabersonine by 34%. These results point to the need for overexpressing multiple genes within the pathway to increase the flux toward vinblastine and vincristine.


Assuntos
Antranilato Sintase/biossíntese , Catharanthus/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Raízes de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Transferases/biossíntese , Antranilato Sintase/genética , Catharanthus/genética , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/química , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Transferases/genética , Vimblastina/biossíntese , Vincristina/biossíntese
5.
Biotechnol Bioeng ; 102(5): 1521-5, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19031426

RESUMO

Transgenic hairy root cultures have the potential to be an industrial production platform for a variety of chemicals. This report demonstrates the long-term stability of a transgenic Catharanthus roseus hairy root line containing the inducible expression of a feedback-insensitive anthranilate synthase (AS). After 5 years in liquid culture, the presence of the inserted AS gene was confirmed by genomic PCR. The inducible expression of AS was confirmed by enzyme assay and by changes in terpenoid indole alkaloid concentrations. This report also demonstrates that it may take as long as 2 years for the metabolite profile to stabilize.


Assuntos
Antranilato Sintase/biossíntese , Catharanthus/enzimologia , Instabilidade Genômica , DNA de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Reação em Cadeia da Polimerase , Alcaloides de Triptamina e Secologanina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...